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Introduction and
theoretical background
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Hamiltonian simulations
Schrödinger equation  evolution of a system:

but the Hilbert space is often infinite dimensional…

→

i
∂
∂t

|ψ⟩ = H|ψ⟩ , (1.1)

Truncation of the Hilbert space to a vector space 
of size 

Operators as matrices on 

Limit recovered when 

V

N

V

N → ∞

Formalism suited for: tensor networks, quantum devices
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Lattice formulation
Gauge invariance:

In the  gauge we find:

Uμ(x) → V (x)Uμ(x)V −1(x + μ̂) . (1.2)

A0 = 0

H =
g2

2
∑
x,i,a

(Li)
2
a(x) −

1
4g2

∑
x,i>j

Tr[Uij(x) + U
†
ij(x)] ,

LaLa = RaRa [La,U ] = −τaU [Ra,Lb] = Uτa
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Representing the Hilbert space (I)
A basis for the Hilbert space are the Lie algebra irreps (electric basis):

|j,m,μ⟩ , j ∈ N/2 |m|, |μ| < j

Clebsh-Gordan expansion

This is all fine in an infinite dimensional space, but…

U (α,β)|J,m,μ⟩ = ∑
j∈N/2

√
2J + 1
2j + 1

⟨J,m;
1
2

,α|j,m + α⟩

⟨J,μ;
1
2

,β|j,μ + β⟩ |j,m + α,μ + β⟩ .

(1.3)

In a finite Hilbert space we have to give up something 🙁:

tr[A,B] = 0
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Representing the Hilbert space (II)
Clebsh-Gordan truncation

Commutation relations ✅

Gauss law invariance:
 ✅

Non unitary links ❌

Need penalty term for
 ❌

[H,Ga] = 0

Ga|ψ⟩ = 0

Unitary links (our approach)

Commutation relations ❌

Gauss law breaking:
 ❌

Unitary links ✅

 as gates  initial state
s.t.  ✅

[H,Ga] ≠ 0

U →
Ga|ψ⟩ = 0
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Unitary links in the magnetic basis
  group manifold . Diagonal links:

Canonical momenta are Lie derivatives:

(x,μ) → M = {p1, … , pN}

U = diag (U(p1), … ,U(p1)) , pi ∈ M

Laf(U) = −i
d

dϵ
f(eiϵτaU) , Raf(U) = −i

d

dϵ
f(Ueiϵτa)

Note: this is just like  in NRQM! p = −i d
dx |ψ(x)⟩
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U(1) theory
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Continuum limit on the manifold
Points on C are a basis:

The momenta are simply
(abelian group):

U |α⟩ = eiα|α⟩

La = −i d
dω

Ra = +i d
dω
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SU(2) theory
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Derivatives on S3

Eigenfunctions on  (Wigner D-
functions):

S3

D(θ,ϕ,ψ) = eimϕdjm,μ(θ)eiμψ

L± = e∓iϕ [±
1

sin θ

∂
∂ψ

+
∂
∂θ

∓ cot θ
∂

∂ϕ
]

L3 = −i
∂

∂ϕ
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 irreducible representationssu(2)

(∑
a

R2
a)|j,m,μ⟩ = (∑

a

L2
a)|j,m,μ⟩ = j(j + 1)|j,m,μ⟩

L3|j,m,μ⟩ = m|j,m,μ⟩
R3|j,m,μ⟩ = −μ|j,m,μ⟩

(L1 ± iL2)|j,m,μ⟩ =√j(j + 1) − m(m ± 1)|j,m ± 1,μ⟩

(R1 ∓ iR2)|j,m,μ⟩ = −√j(j + 1) − μ(μ ± 1)|j,m,μ ± 1⟩

Now fix a truncation: . We have  states:j ≤ q Nq

Nq =∑
j≤q

(2j + 1)2 =
1
6

(4q + 3)(2q + 2)(2q + 1) ∼ O(q3)

Question: How many eigenstates of  can I reproduce in the discrete space?U
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Truncated  irreps (example)su(2)
Lel.

3 =
q

∑
j=0

∑
|m|≤j

|j,m⟩m⟨j,m|

=̇ ,

⎡⎢⎣ ⋯ ⋯ 0

⋮ ⋱

0 ⋯

j=1/2

0

0 ⋯ 0 [ ]j=0

⎡⎢⎣[ ]
μ=1/2

0

0 [ ]
μ=−1/2

1/2 0
0 −1/2

1/2 0
0 −1/2

⎤⎥⎦ 0

⎤⎥⎦Question: How many of these survive after discretizing the ?S3

Spoiler alert ⚠: It depends on the discretization (see e.g. 
)

M. Garofalo - Canonical
Momenta in Digitized SU(2) Lattice Gauge Theory
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Frequencies on 
 is a non-abelian manifold   points cannot sample 

Fourier modes! (c.f. Shannon-Nyquist theorem)

S3
S3 →Nα Nα

 😤Nα > Nq

Nα ≥ {
(q + 1/2)(4q + 1)2 q half integer
(q + 1)(4q + 1)2 q integer

Physical consequence:

   square matrix  of change of
basis between electric and magnetic basis.
U †U = UU † = 1 ⟹ ∄  V
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Canonical momenta on 
partitionings (I)

 is at most rectangular  enlarging the space of the first
  irreps.

Presence of extra “garbage states” 🗑️

S3

V →
Nq su(2)

What is the form of ?V

f(→αk) = f(θ,ϕ,ψ) =
q

∑
j=0

j

∑
m,μ=−j

V j
m,μ(→αk)f̂(j,m,μ)
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Discrete Jacobi Transform

 Gaussian weights of Legendre polynomials

V j
m,μ(→αk) = (j + 1/2)1/2√

ws

NϕNψ

Dj
m,μ(→αk) (1.4)

ws

 of size 

 (but not )

V Nα × Nq

V †V = 1Nq×Nq
V V † = 1Nα×Nα

dim[ker(V †)] = Nα − Nq
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Properties of the discrete momenta

Properties:

Exact Lie algebra:  ✅

First  eigenstates  reproduced exactly
✅

Commutation relations fulfilled for the first
 irreps ✅

La = V L̂aV
† , Ra = V R̂aV

†

ifabc

Nq |j,m,μ⟩

Nq
′ = Nq−1/2
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Vacuum and Gauss Law
Dense matrices for the momenta (local for ) ❌

 states degenerate with the electric vacuum ❌

 lift with projector   decoupled ✅

 on  states. ❌

q → ∞

Nα − Nq

→ Pj>q →

[Ga,H] ≠ →0 Nα − Nq
′
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Preliminary results:
 in 1+1

dimensions
SU(2)
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Conclusion
We can’t have both unitary links and exact commutation relations on all
states:

[La,U ]✅ ⟹ UU † = U †U = 1❌

UU † = U †U = 1✅ ⟹ [La,U ]❌

Both unitary and non-unitay links formulations deserve to be considered

Unitary links limit the number of faithful represented electric eigenstates

Desirable feature: being able to reduce the dimensionality of the space,
e.g. constraining the values of the plaquette close to .1
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Thank you for your
attention!
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Backup
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Truncated Clebsh-Gordan expansion
when  (I)
Approaching …

a → 0
a → 0

Truncated Clebsh-Gordan exapansion:  don’t resemble
group elements anymore

Need to check  critical point

It is the same as the continuum theory?

what are the residual symmetries?

can we exclude nasty operators?

U

∃
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Discrete manifolds when  (II)
Approaching …

a → 0
a → 0

Unitary links:  take values in the manifold

Same as Lagrangian simulation (finite machine precision 
not exactly )

Need to check  2nd order phase transition at finite 
(Monte Carlo with same partitioning)

Check that it has the same step scaling function

U

→
SU(2)

∃ N
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 theory: U(1) a → 0

Uμν|α1→4⟩ = eiα|α1→4⟩

In the continuum limit 
the plaquette approaches :

 restrict to the
corresponding eigenstates
gives an effective theory for
fine lattices (if correlation
length fits the lattice)

a → 0
1

Uμν = eia
2Fμν+O(a3) = 1 + ia2F

→
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